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We examine the droplet motion in one-component fluids in a small temperature gradient by solving linear-
ized hydrodynamic equations supplemented with appropriate surface boundary conditions. We show that the
velocity field and the temperature around the droplet are strongly influenced by first-order phase transition
taking place at the interface. Latent heat released or absorbed at the interface drastically changes the hydro-
dynamic flow around the droplet. As a result, the temperature becomes almost homogeneous inside the droplet
and the Marangoni effect arising from the surface tension gradient is much suppressed. The droplet velocity is
also much decelerated.
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I. INTRODUCTION

Bubble motion in liquid is observed in everyday life, but
its mathematical description is not simple �1�. As a classic
example, the flow field around a spherical droplet moving at
a constant velocity vg in gravity g was calculated by Had-
amard �2� and by Rybczynski �3� many years ago. To linear
order in g they found

vg =
�� + ����� − ���
3��� + 3��/2�

R2g , �1.1�

where � and � ��� and ��� are the mass density and the shear
viscosity outside �inside� the droplet. Hereafter the quantities
with �without� a prime are those inside �outside� the droplet.
In their calculation no mass flux through the interface was
assumed and no temperature deviation was involved. Under
these assumptions the droplet shape remains nearly spherical
when the Reynolds number Re=vgR /��gR3�1−�� /�� /�2 is
small. Here �=� /� is the exterior kinematic viscosity.

As another classic example, Young et al. �4� calculated
the steady velocity of a spherical droplet in a small tempera-
ture gradient,

T = �dT

dz
�

�

. �1.2�

Hereafter T is the temperature gradient far from the droplet,
where �T is along the z axis. Still assuming no phase change
at the interface, they took into account the dependence of the
surface tension � on the deviation �T=T−T0,

� = �0 − �1�T , �1.3�

where T0 is a reference temperature and �1=−d� /dT is usu-
ally a positive constant. Then a droplet with radius R moves
with

vY =
��1

�� + 3��/2��2� + ���
RT , �1.4�

to linear order in T. The � ���� is the thermal conductivity
outside �inside� the droplet. This is an example of the Ma-
rangoni effect �1�, where the motion occurs to lower the
surface free energy. At zero gravity, the droplet migration is

toward the warmer region both for gas and liquid droplets
under d� /dT	0. In gravity and in temperature gradient
the migration velocity is vY+vg, where vg remains the same
as that in Eq. �1.1� �even if heat conduction is included in
the calculation�. Note that Eq. �1.4� is justified for small
Reynolds number Re and small Marangoni number
Ma=R2�1T /�DT �5�, where DT=� /�Cp is the �exterior� ther-
mal diffusion constant with Cp being the isobaric specific
heat per unit mass. Young et al. also reported an experiment
of applying large temperature gradients of order
10–102 K/cm, which balanced with the buoyancy and held
bubbles stationary �4�.

Equation �1.4� can be used only when the gas and the
liquid consist of different fluids without phase change, for
example, in the case of air bubbles in silicone oil �4,6,7�.
However, in some recent experiments, droplets were those
produced in phase separation in a binary mixture �8� and in
CO2 �9�. In such fluids first-order phase transition between
the two phases �evaporation and condensation� can occur at
the interface, but this effect has not yet been examined in the
literature. This paper aims to construct a first theory of this
effect in one-component fluids.

If phase change is allowed, the fluid regions near the in-
terfaces should be close to the coexistence curve T=Tcx�p� in
the p-T phase diagram. In zero gravity, the temperature gra-
dient should then nearly vanish inside each droplet, since the
pressure is homogeneous outside the droplets �and is slightly
higher inside the droplets by 2� /R� in slowly evolving states
with Re
1. Recently such temperature profiles have been
obtained numerically in a dynamic van der Waals theory
�10�. Although it is a natural consequence in one-component
fluids without contamination �11,12�, the mechanism is dy-
namical and is hence highly nontrivial. We point out that a
convective velocity of order

vc =
q

��T�s
= −

�T
��T�s

�1.5�

carrying latent heat T�s is sufficient to suppress the tempera-
ture gradient inside a droplet. Here q=−�T is the applied
heat flux, and �s=s�−s is the entropy difference per unit
mass. At zero gravity, we shall see that the droplet migration
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velocity vD is of order vc. For a gas droplet in CO2 at
T=298 K, for example, we have vc�0.74�10−2T /T cm/s
with T /T in cm−1 �13�. It is of interest to compare the two
characteristic velocities, vY in Eq. �1.4� and vc in Eq. �1.5�.
To this end we introduce the dimensionless number,

M1 = R�1��T�s/�� , �1.6�

in terms of which vc /vY�M1
−1 for a gas droplet. As very

rough estimates for simple fluids far from the critical point,
we set �14,15�

DT =
�

�Cp
�

kBT

6�a
, �s � Cp, �1 �

kB

a2 , �1.7�

where a is a microscopic length of the order of the atomic
radius. This leads to M1���R /�a. Thus M1�1 and
�vc /vY�
1 for large R. See Sec. IV D for the behavior of M1
near the critical point. For a liquid droplet in gas, on the
other hand, we have vc /vY����� /��M1. With increasing R
the highly efficient latent heat transport should readily domi-
nate over the usual heat conduction within a droplet. This
indicates vanishing of the surface tension variation along the
interface and suppression of the Marangoni effect, against
heat flow, in one component fluids.

This paper will present linear analysis of the simplest case
of a spherical droplet in weak gravity and temperature gra-
dient. In Sec. II we will give linear hydrodynamic equations
and surface boundary conditions. In Sec. III we will examine
the axisymmetric situations. In Sec. IV we will give some
new predictions, which could be verified particularly in the
weightless condition. Estimations near the critical point will
be presented.

II. BASIC EQUATIONS

A. Spherical droplet

We consider a gas or liquid droplet in a one-component
fluid. In Appendix A we will examine how such a droplet
can be stable theoretically and be prepared experimentally. In
the unperturbed equilibrium state described in Appendix A,
the pressure p is a constant p0 for r�R and is p0+2�0 /R for
r	R, the temperature is homogeneous �T=T0�, and there is
no fluid motion �v=0�. The pressure inside the droplet is
higher than that outside it by 2�0 /R �Laplace’s law�. We then
apply a temperature gradient T= �dT /dz�� and a gravity field
g and assume that the droplet is moving at a constant veloc-
ity v� in the vertical z axis. We may take the origin of the
reference frame at the droplet center and seek a steady axi-
symmetric solution of the hydrodynamic equations with ap-
propriate boundary conditions. For small T= �dT /dz�� and g
and/or for small R, the droplet shape may be assumed to be
spherical, as in the previous theories �2–4�. Deviation from
sphericity occurs from second orders in T or g �16�.

In this paper the time derivatives and contributions of
order T2, Tg, or g2 in the hydrodynamic equations will be
neglected. We employ these assumptions for the mathemati-
cal simplicity, though they are very restrictive. To apply our
theory, we suppose space experiments for a macroscopically
large gas droplet, while a very tiny droplet needs to be used

under the earth gravity. For a liquid droplet in gas far from
the critical point, the viscosity of the surrounding gas is very
low �17� and gravity-induced acceleration is unavoidable
and, even in space, it should be difficult to remove nonsteady
fluid motions in heat flow. See the item �iii� in the last sec-
tion for more comments.

In the following calculation it is convenient to use the
spherical coordinates �r ,� ,��. The distance from the droplet
center is written as r. Using the solid angles � and � we
define the three orthogonal unit vectors,

e1 = r−1r = �sin � cos �,sin � sin �,cos �� ,

e2 =
�

��
e1 = �cos � cos �,cos � sin �,− sin �� ,

e3 = e1 � e2 = �− sin �,cos �,0� . �2.1�

B. Linear hydrodynamic equations

First we present the linearized hydrodynamic equations
for v, �p, and �T �18� in steady states in the bulk region,
which are valid both within and outside the droplet �r	R
and r�R�. The continuity equation for the mass density �
yields

� · ��v� = � � · v + v · �� = 0. �2.2�

Here �� /�t=0 is assumed and v ·�� is of second order �of
order Tg in the gravity-induced density stratification� for r
�R. It follows the incompressibility condition,

� · v = 0, �2.3�

even in compressible fluids. The momentum equation be-
comes

− ��p + ��2v − �gez = 0 , �2.4�

where ez is the unit vector along the z axis. In this equation
the density deviation �� induced by gravity and/or heat flow
will be neglected so that the buoyancy effect arises from the
discontinuous change in the mass density � across the inter-
face �see Eq. �3.4��. The pressure deviation is defined by

�p = p − p0 �r � R�

= p − p0 − 2�0/R �r 	 R� �2.5�

Taking the divergence of Eq. �2.4� yields

�2�p = 0, �2.6�

where we have neglected the term −��� /�z�g in the bulk
region �r�R�. Also the temperature deviation �T satisfies

��2�T = 0. �2.7�

Supposing slow fluid motions we have neglected the nonlin-
ear convective terms, −�v ·�v in Eq. �2.4� and −�v ·�s in
Eq. �2.7� with s being the entropy variable �18�.

Notice that the coefficients �, �, and � in the above equa-
tions are different between the two phases. Therefore, they
will be written as ��, ��, and �� inside the droplet, while
those outside it will remain unprimed.
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C. Boundary conditions

Next we consider the boundary conditions at the surface
r=R. In the following equations Eqs. �2.8�–�2.17� the vari-
ables v, �T, and �p denote the values at r=R+0 �immedi-
ately outside the droplet�, while v�, �T�, and �p� denote
those at r=R−0 �immediately inside the droplet�.

�i� First we consider the boundary conditions imposed on
the velocity field and those from the stress balance. The mass
conservation at the surface yields

J = �e1 · v = ��e1 · v�, �2.8�

where J is the mass flux through the interface representing
conversion between gas and liquid. We assume the continuity
of the tangential velocity,

e2 · v = e2 · v�. �2.9�

The stress balance at the interface yields

�p − �e1 · eJ · e1 −
2

R
�1�T = �p� − ��e1 · eJ� · e1,

�2.10�

− �e2 · eJ · e1 + �1e2 · ��T = − ��e2 · eJ� · e1, �2.11�

in the normal and tangential directions, respectively, where

eJ= 	�vi/�xj + �v j/�xi
 �2.12�

is the strain rate tensor. Equation �2.10� represents the
boundary condition that the discontinuity of the tangential
stress is equal to the tangential gradient of the surface ten-
sion, which arises from the momentum balance at the surface
�1,4,19�.

�ii� Second, the energy conservation at the surface gives

Je = hJ − e1 · � � �T = h�J − e1 · �� � �T�, �2.13�

where Je is the energy flux through the interface and

h = �e + p�/� = Ts + � �2.14�

is the enthalpy per unit mass. Here e is the energy density, s
is the entropy per unit mass, and � is the chemical potential
per unit mass. Note that the energy current density is written
as Je=�hv−��T in the bulk region.

�iii� Third, we assume the continuity of the temperature
and the chemical potential at the interface,

�T = �T�, �2.15�

�� = ���. �2.16�

Using the Gibbs-Duhem relation ��=−s�T+�−1�p we re-
write Eq. �2.16� as

− �s�T =
1

�
�p −

1

��
�p�, �2.17�

where �s=s�−s. However, general statistical-mechanical
theory shows that T and � can be discontinuous across an
interface in the presence of J and Je �19,20�. Temperature
discontinuity across an interface of evaporating liquid has

been calculated by kinetic theory �21,22� and has been ob-
served in experiments �23�. In addition, in helium systems at
low temperatures �24,25�, discontinuity of the chemical po-
tential gives rise to a surface dissipation mechanism relevant
to capillary-wave damping. In Appendix B, surface kinetic
relations will be introduced, which are more general than
Eqs. �2.15� and �2.16� and account for discontinuous changes
of T and �.

In the previous theories without first order phase transi-
tion �2–4�, there was no mass conversion �J=0� and the
chemical equilibrium Eq. �2.16� was not assumed.

III. AXISYMMETRIC SITUATIONS

The gravity and the heat flux far from the droplet are
assumed to be along the z axis. Then the fluid flow is axi-
symmetric with respect to the z axis.

A. Expressions in the bulk region

We first show the expressions for v, �p, and �T in the
bulk region. As will be shown in Appendix C, the velocity
field is expressed as �26�

v�r� = ��Ĥ�r�cos �� + �Q̂�r�cos ��r

= �Ĥ� −
1

r
Ĥ + Q̂r� z

r2r +
1

r
Ĥez, �3.1�

where cos �=z /r and ez is the unit vector along the z

axis. Here Q̂ and Ĥ depend only on r. Outside the droplet we
have

Q̂ = Q1
R

r2 , Ĥ =
R

2
Q1 + H1

R3

r2 − vDr �r � R� . �3.2�

Inside the droplet we have

Q̂ = Q2�
r

R2 , Ĥ = −
2

5R2Q2�r
3 + H2�r �r 	 R� . �3.3�

Here Q1, H1, vD, Q2�, and H2� are constants having the
dimension of velocity. Far from the droplet �r�R� we find
v→−vDez, so vD is the droplet velocity in the original refer-
ence frame. A well-known example of the velocity field
around a hard sphere can also be expressed in the form of
Eq. �3.1� with Eq. �3.2� �27�. From Eq. �2.6� the pressure
deviation is determined as

�p = �Q1
Rz

r3 − g�z �r � R�

= − 2��Q2�
z

R2 − g��z �r 	 R� . �3.4�

From Eq. �2.7� the temperature deviation is written as

�T = �T − T1�
R3

2r3z + Tz �r � R�

= T1�z �r 	 R� . �3.5�

Here T1cos �=e1 ·�T at r=R+0, T1�cos �=e1 ·�T at r=R−0,
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and T is the temperature gradient far from the droplet. The
temperature gradient is homogeneous within the droplet:

�dT

dz
�

in
= T1�. �3.6�

B. Axisymmetric boundary conditions

From the boundary conditions in Eqs. �2.9�–�2.17� we ob-
tain linear relations among the coefficients Q1, H1, vD, Q2�,
H2�, T1, and T1�. The mass and energy fluxes through the in-
terface are angle-dependent as

J = J1 cos �, Je = J1e cos � , �3.7�

where J1 and J1e are constants.
�i� From Eqs. �2.8�–�2.11� we obtain

J1 = ��Q1 − 2H1 − vD� = ���H2� − 1
5Q2�� , �3.8�

1
2Q1 + H1 − vD = − 2

5Q2� + H2�, �3.9�

3

2
��Q1 − 4H1� +

3

5
��Q2� −

g

2
R2�� − ��� = R�1T1�,

�3.10�

− 6�H1 + 3
5��Q2� = R�1T1�. �3.11�

As the temperature and the tangential temperature gradient at
the interface in Eqs. �2.10� and �2.11� we have used the val-
ues at r=R−0. Equations �3.10� and �3.11� give

Q1 = gR2�� − ���/3� . �3.12�

From these equations H1, vD, and H2� may be expressed in
terms of J1, Q2�, and Q1 as

H1 =
1

3
� 1

��
−

1

�
�J1 −

1

15
Q2� +

1

6
Q1, �3.13�

vD = −
1

3
� 2

��
+

1

�
�J1 +

2

15
Q2� +

2

3
Q1, �3.14�

H2� =
1

��
J1 +

1

5
Q2�, �3.15�

The interior temperature gradient T1� is expressed as

R�1T1� = �2

5
� +

3

5
���Q2� − 2�� 1

��
−

1

�
�J1 − �Q1

�3.16�

Now J1 and Q2� remain undetermined.
�ii� The energy conservation relation �2.13� leads to

Je1 = hJ1 − �T1 = h�J1 − ��T1�. �3.17�

Next the temperature continuity Eq. �2.15� yields

T1 = 3T − 2T1�, �3.18�

under which the tangential temperature gradient turns out to
be commonly given by e2 ·�T=−T1� sin � inside and outside

the droplet �r=R±0�. This means that there is no ambiguity
in Eqs. �3.10� and �3.11� under the temperature continuity.
From Eq. �3.17� we also obtain

T�sJ1 = �2� + ���T1� − 3�T , �3.19�

where h�−h=T�s�−s� from the continuity of the chemical
potential in Eq. �2.16�. Equation �2.17� also gives

���sT1� = −
���

�R2 Q1 −
2��

R2 Q2�. �3.20�

Addition of Eqs. �3.19� and �3.20� to Eqs. �3.13�–�3.16�
gives a complete solution.

IV. SOLUTIONS

To simplify the mathematical expressions to follow, we
use the following symbols:

�̂ = ��/�, �̂ = ��/�, �̂ = ��/� . �4.1�

These numbers are smaller than 1 for a gas droplet in liquid
and larger than 1 for a liquid droplet in gas �17�.

A. Case of TÅ0 and g=0 without phase change

The results by Young et al. �4� can be obtained by setting
J1=0 in Eqs. �3.13�–�3.16� and �3.19�, where the chemical
equilibrium condition �3.20� is not used. They showed
vD=vY, where vY is given by Eq. �1.4�. However, they did
not show the explicit expression for the velocity field. It is
simply given by

v + vDez = −
vD

2
R3� 1

r3ez −
3z

r5 r� �r � R�

= vD�5

2
ez +

3z

2R2r −
3r2

R2 ez� �r 	 R� . �4.2�

For r	R the velocity is a dipolar field. At r=R it is continu-
ous as e1 ·v=0 �or J=0� and e2 ·v=−�3H2 /2�sin �. In Fig. 1
we display the above velocity field in the x-z plane. The
temperature deviation is of the form,

�T = ��1 − �̂

2 + �̂
�R3

r3 + 1�zT �r � R�

=
3

2 + �̂
zT �r 	 R� . �4.3�

Here the surface tension gradient in the tangential stress bal-
ance in Eq. �2.11� is crucial, resulting in the velocity of order
�1�T� /�. The temperature gradient within the droplet is along
the z axis and is equal to 3�T / �2�+���, which tends to 3T /2

for �̂→0. In Fig. 2 we show the normalized temperature

deviation �T�r�−T�0�� /RT for �̂=0.1 in the x-z plane.

B. Case of TÅ0 and g=0 with phase change

We proceed to the case with phase change. Here we as-
sume T�0 and g=0. In addition to M1 in Eq. �1.6� we in-
troduce
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M2 = R���s/�1. �4.4�

From Eq. �1.7� it is also a large number of order ��R /�a with
a being a microscopic length far from the critical point.

�i� It is straightforward to solve Eqs. �3.13�–�3.20� with
Q1=0. Though complicated, J1, T1�, and vD are expressed as

J1 = 3��vc/�1 + �2 + �̂��1� , �4.5�

T1� = 3�1T/�1 + �2 + �̂��1� , �4.6�

vD = − vc
��̂ + M1�1/3� + �̂�1 + �̂/2�

�1 + �2 + �̂��1��1/3 + �̂/2�
, �4.7�

where �1 is a small dimensionless number defined by

�1 =
10�̂�1 − �̂�

M1�M2�1 + 3�̂/2� + 5�̂�
�4.8�

and vc is the characteristic velocity in Eq. �1.5�. Since
vD�−vc, a gas �liquid� droplet moves towards the warmer
�cooler� region.

�ii� Simpler results can be obtained for large M1 and M2.
From Eqs. �4.7� and �4.8� the temperature gradient T1� inside
the droplet becomes very small compared to T as

�dT

dz
�

in
= T1� 

10�̂�1 − �̂�
�1/3 + �̂/2�M1M2

T , �4.9�

where M1M2=R2����s�2T /�� and �dT /dz�in�T /R2. In Ap-
pendix B another behavior �dT /dz�in�T /R will emerge in
the presence of the surface dissipation effect, which is also
very small. The internal temperature gradient �dT /dz�in is
virtually zero except for extremely tiny droplets.

In the following we give expressions in the limit of
M1→� and M2→�. From Eqs. �4.6� and �3.17� the fluxes
through the interface are calculated as

J1  3��vc, �4.10�

Je1  h�J1  �3h�/T�s�q , �4.11�

where vc is defined by Eq. �1.5�, h� is the enthalpy per unit
mass within the droplet, and q=−�T is the applied heat flux.
The energy current is h�J1ez within the droplet and the en-
ergy flux through the interface is h�J1 cos �. If we calculate
the energy flux outside the droplet close to the interface, it
consists of the convective term hJ1 cos � and the heat con-
duction term 3q cos �, with the sum being equal to the en-
ergy flux calculated within the droplet from h�−h=T�s. The
droplet velocity is of the form,

vD 
�̂ + �1 + �̂/2��̂

�1/3 + �̂/2���T�s
�T . �4.12�

The temperature is homogeneous inside the droplet and

FIG. 1. Velocity field �vx ,vz� in a small temperature gradient
without phase change in the reference frame moving with a droplet
�4�. The velocity is tangential and continuous at the interface.

FIG. 2. Normalized tempera-
ture deviation �T�r�−T�0�� /RT
without phase change for the

gas droplet case with �̂=0.1 in the
x-z plane. Its gradient within the
droplet is larger than the applied
gradient by 3/2.1 from Eq. �4.3�.
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�T  T�1 − R3/r3�z �r � R� . �4.13�

The pressure deviation �p defined above Eq. �2.6� is negli-
gibly small inside the droplet ��R−2� and is zero outside it
for g=0 from Eqs. �3.4� and �3.12�. The velocity field is
expressed as

v + vDez  vc�
�̂

2
�R3

r3 ez −
3R3

r5 zr� �r � R�

 vc�� z

R2r + �2 +
�̂

2
−

2r2

R2 �ez� �r 	 R� ,

�4.14�

where vc� is related to vc as

vc� =
1 − �̂

1/3 + �̂/2
vc = −

1

T
� �T

�p
�

cx

�T
�1/3 + �̂/2�

. �4.15�

Use has been made of the fact that the ratio �1/��
−1/�� / �s�−s� is equal to the derivative along the coexist-
ence curve ��p /�T�cx �the Clausius-Clapeyron relation�. Here
we show the above velocity field for the gas droplet case
with �̂= �̂=0.3 in Fig. 3 and for the liquid droplet case with
�̂= �̂=4 in Fig. 4. We also show the temperature in Fig. 5
using Eq. �4.13�. Similar temperature profiles have been
found in simulation in the dynamic van der Waals theory
�10�.

To obtain these simple approximate solutions, we may
omit �1�T on the right-hand sides of Eqs. �3.10� and �3.11�,
because the interior temperature is almost homogenized. As a
result, the interior thermal conductivity �� does not appear in
Eqs. �4.12�–�4.14�. Furthermore, notice that v and �T in this
limit depend on the viscosities only through the ratio �̂
=�� /�. Hence, the same steady-state profiles follow even in
the large limit of � and �� with fixed ratio. This allows
simulations with large viscosities or in the low Reynolds
number limit �10�.

C. Case of gÅ0 and T=0 with phase change

Next we assume g�0 and T=0. The calculation may be
performed as in the previous case. Not taking the large limit
of M1 and M2 we may express J1 as

J1 = −
�1 + 3�̂/2��̂ + 5�̂

�1 + �̂��M1M2 + �2�
�2 + �̂���vg �4.16�

where vg is given by Eq. �1.1� and

�2 =
10�̂M1

2 + 3�̂
+ 20�1 − �̂�

�̂�2 + �̂�
2 + 3�̂

. �4.17�

For large M1 and M2 we obtain J1 /���−vg /M1M2, and
vDvg. The mass flux through the interface is very small. In
this limit the interior temperature gradient is given by

�dT

dz
�

in
= T1�  −

1

3
� �T

�p
�

cx
��̂ +

10�̂

2 + 3�̂
��g . �4.18�

The temperature inhomogeneity around the droplet is thus of
order ��T /�p�cx�gR. Similarly, the interior pressure gradient
is written as

�dp

dz
�

in
 − g�� −

1

3
g�� − ���

10�̂

2 + 3�̂
. �4.19�

D. Near-critical case

In the vicinity of the critical point the reduced tempera-
ture �=1−T /Tc is small. We have the scaling behavior,

M1  A1�1−�−�R/� , �4.20�

M2  A2��+�−1R/� , �4.21�

where A1 and A2 are constants and �=�−0�−� is the correla-
tion length on the coexistence curve with �−0 being a micro-

FIG. 3. Velocity field �vx ,vz� around a gas droplet in a small
temperature gradient with phase change in the reference frame
moving with the droplet. Here �� /�=�� /�=0.3 and use is made of
Eq. �4.14�.

FIG. 4. Velocity field �vx ,vz� around a liquid droplet in a small
temperature gradient with phase change in the reference frame
moving with the droplet. Here �� /�=�� /�=4 and use is made of
Eq. �4.14�.

A. ONUKI AND K. KANATANI PHYSICAL REVIEW E 72, 066304 �2005�

066304-6



scopic length. The �0.11, �0.33, and �= �2−�� /3
0.63 are the usual critical exponents, so 1−�−�0.56.
Here �s���, ��=surface tension��kBT /�2��2�, and �1 /�
2� / �Tc−T�. We may assume R�� since the interface
thickness is of order �. We find

M1M2  A0�R/��2, �4.22�

where the coefficient A0=A1A2= ����s�2T /�� is a universal
number estimated to be about 12 from the thermodynamic
relations among the critical amplitudes and the relation
DT=� /�CpkBT /6�� in the critical dynamics of fluids
�28�. For CO2 we find A20.21 and A112/0.2157.

From Eqs. �4.5�–�4.8� we may justify Eqs. �4.11�–�4.14�
even if M1 is not very large. From Eqs. �1.5� and �4.7� we
estimate the velocities without gravity as

vD  � �T

�p
�

cx

3�T
T�1 − ��/��

=
3�T

�T�s
, �4.23�

vc�  −
6

5T
� �T

�p
�

cx
�T . �4.24�

The velocity field �v=v+vDez in the laboratory
reference frame is smaller than the droplet velocity vD by
�1−�� /����� because it is of order vc� from Eq. �4.14�. In
Fig. 6 we plot the scaled velocity �v /vc�= �vx /vc� ,�vz /vc�� in
the x-z plane. More explicitly we obtain

vD  AD�−xDT/Tc, �4.25�

where xD=4/3−�−2� /30.96. With T /Tc in cm−1 we find
AD=5�10−5 cm2/s for CO2.

On earth, the gravity effect can be very strong. In fact, let
Tg be the characteristic temperature gradient for which vD in
Eq. �4.23� is of order vg. Some calculations yield the follow-
ing estimate:

Tg � ag�R/��2, �4.26�

where ag= ��T /�p�s�g��T /�p�cx�cg is the adiabatic tem-
perature gradient, equal to 0.27 mK/cm for CO2. If heated
from above under �T��Tg, an upper fluid region will be in a

one-phase state and the rest will be driven away from the
critical point. If heated from below, the fluid will be in
Rayleigh-Bénard turbulence at much smaller heat input �29�.
Hydrodynamic turbulence in two-phase states is related to
the problem of boiling and is itself a great challenge in future
research �26,30�.

V. SUMMARY AND REMARKS

We have investigated thermocapillary hydrodynamics in
the linear order around a spherical droplet, taking into ac-
count phase change at the interface, in one-component
fluids. As a crucial ingredient of our theory, we have as-
sumed the continuity of the temperature and the chemical
potential across the interface as in Eqs. �2.15� and �2.16�.
The temperature gradient inside the droplet is then extremely
small, as illustrated in Fig. 5. More general boundary condi-
tions in Appendix B, which allow discontinuous changes
in the temperature and the chemical potential, still lead to a

FIG. 5. Normalized tempera-
ture deviation �T�r�−T�0�� /RT
with phase change in the x-z
plane. Its gradient vanishes within
the droplet.

FIG. 6. Velocity field �vx ,�vz� in a small temperature gradient
with phase change near the critical point in the reference frame
fixed to the container. Here use is made of Eq. �4.14�.
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very small interior temperature gradient as in Eq. �B6�.
This is because the latent heat transport dominates over the
usual heat conduction within the droplet. We have found that
our results can be much simplified if use is made of large
sizes of the two dimensionless numbers M1 Eq. �1.6� and M2
in Eq. �4.4�. The migration velocity is much smaller with
phase change than without phase change by M1

−1. It is
towards the warmer region for a gas droplet and towards the
cooler region for a liquid droplet, as can be seen in Eq. �4.7�
or Eq. �4.12�. A gas droplet can even touch a heated bound-
ary wall that is wetted by liquid in equilibrium �10,12�, lead-
ing to apparent partial or complete wetting by gas in
nonequilibrium.

Some further remarks are given below.
�i� Even on earth, we are interested in how a droplet reacts

to heat flow and how the temperature changes inside it. In
the presence of both heat flow and gravity, the internal tem-
perature gradient is of order ��T /�p�cx�g as in Eq. �4.18�.

�ii� In space, a spherical bubble can be suspended in liq-
uid in equilibrium at the center of a container. It is then of
great interest how the velocity field and temperature evolve
around the bubble after application of heat flux. Phase sepa-
ration experiments in a small temperature gradient should
also be interesting, where latent heat transport among the
domains would enhance the Nusselt number �26�. For ex-
ample, we may prepare a one phase state with a small tem-
perature gradient and then cool both the top and bottom tem-
peratures below Tc.

�iii� In this paper we have studied only steady solutions of
the linearized hydrodynamic equations. We should examine
time-evolution of two-phase states after application of heat
flux, where adiabatic heat transport, called the piston effect,
comes into play on rapid time scales �26,31�. We should note
that there is a difference in the adiabatic temperature deriva-
tive ��T /�p�s between gas and liquid �26� and the tempera-
ture is changed differently within and without the droplet
after a pressure change. As a result, a liquid �gas� droplet
becomes cooler �warmer� than the surrounding fluid after
application of heat flux. This temperature difference lasts for
a long time in the case of a liquid droplet in gas because of
the low thermal conductivity of gas �17�.

�iv� Thermocapillary hydrodynamics is not still clearly
understood near the critical point, where the singularities of
the thermodynamic and dynamical properties largely influ-
ence the dynamics �26,29,30�.

�v� We are also interested in droplet motion in binary
mixtures more generally and in helium systems such as
He3–He4 mixtures at low temperatures �26�. Marek and
Straub examined the effect of a small amount of noncon-
densable gas doped in the gas phase �11�, which drastically
alters thermocapillary convection. The Marangoni effect can
come into play even at an extremely small density of the
second component, on which we will report shortly.
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APPENDIX A: EQUILIBRIUM SPHERICAL DROPLET

It is not trivial how a spherical gas �liquid� droplet can be
suspended in metastable liquid �gas� as an equilibrium state
at a fixed temperature T0 below the critical temperature Tc in
the gravity-free condition �26�. We may exchange liquid and
gas in the following discussion.

We fix the cell volume V and the total mass at V�0, where
�0 is the average mass density. With appearance of a droplet
the mass density is �� inside it and � outside it. The mass
conservation gives

v�� + �V − v�� = V�0, �A1�

where v=4R3 /3 is the volume of the droplet with radius R
and the volume of the interface region is neglected. We then
minimize the total Helmholtz free energy given by

F = 4�0R2 + vf���� + �V − v�f��� , �A2�

with respect to � and R. Here �0 is the surface tension
and f��� is the Helmholtz free energy density �at temperature
T0�. From Eq. �A1� we obtain ���� /���R=1−V /v and
���� /�v��= ��−��� /v. The minimization condition
��F /���R=0 readily gives

���� = ����� , �A3�

where ����=�f��� /�� is the chemical potential per unit
mass. The other condition ��F /�v��=0 gives Laplace’s law
for the pressure difference,

p���� − p��� =
2�0

R
�A4�

where p=��− f is the pressure.
Let �� and �g be the liquid and gas densities, respectively,

on the coexistence curve. For simplicity, we assume
that �0 is slightly smaller than �� �slight supercooling�. Then
��0��, ���g, and v
V. In this case it is convenient to
rewrite �F=F−Vf0 as

�F = 4�0R2 + v�f���� − f��� − �0��� − ��� + V�f��� − f��0�

− �0�� − �0�� , �A5�

where �0=���0� and use has been made of Eq. �A1�. To
examine the second term we note the relations f����=−pcx

+�cx��+O����−�g�2� and f���=−pcx+�cx�+O���−���2�,
where pcx and �cx are the pressure and chemical potential,
respectively, on the coexistence curve. The second term on
the right-hand side of Eq. �A5� is then rewritten as −v��
with

��  ��cx − �0��� − ���  �1 − �g/���2�/KT, �A6�

where KT= ��� /���T /�2= ��� /�p�T /� is the isothermal com-
pressibility in liquid and
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� = ��� − �0�/��� − �g� �A7�

is the initial supersaturation assumed to be a small positive
number. The third term on the right hand side of Eq. �A5� is
nearly equal to V��−�0�2 /2��

2KT�1−�g /���2v2 /2VKT�v2

�R6. Thus,

�F  8�0Rc
2� x2

2
−

x3

3
+

1

6
� Rc

RM
�3

x6� , �A8�

where x=R /Rc with Rc=2�0 /�� being the usual critical ra-
dius for large V. The radius R cannot exceed RM determined
by �V= �4 /3�RM

3 . We notice that �F has a maximum at
R /Rc=1+ �Rc /RM�3+¯ and a minimum at

R = RM − 1
3Rc + ¯ �A9�

for RM ���V�1/3�Rc. The maximum corresponds to the un-
stable critical droplet and the minimum to the final equilib-
rium droplet we have sought.

APPENDIX B: SURFACE DISSIPATION

When the mass flux J in Eq. �2.8� and the energy flux Je
in Eq. �2.13� are nonvanishing through a gas-liquid interface,
there can be small discontinuities in the temperature and the
chemical potential, resulting in surface dissipation taking
place in the interface region. From general thermodynamic
arguments �19,20� the corresponding entropy production rate
�s per unit area and per unit time is written as

�s = J���/T� − �/T� + Je�1/T − 1/T�� . �B1�

Here the quantities in the interior �within a droplet� are
primed, while those in the exterior �outside it� are unprimed.
From the requirement that �s should be nonnegative-definite,
Onsager reciprocal relations may be postulated:

��/T� − �/T = �11J + �12Je,

1/T − 1/T� = �12J + �22Je. �B2�

The J and Je are the fluxes from the interior to the exterior.
The coefficients �11, �12, and �22 constitute a positive-
definite symmetric 2�2 matrix. The continuity of the tem-
perature and the chemical potential assumed in Eqs. �2.15�
and �2.16� can be obtained in the small limit of these coeffi-
cients. If the gas phase is dilute, the surface dissipation
mainly occurs in the gas phase side within a distance of the
mean-free-path �mf inversely proportional to the mass den-
sity of the gas �g �the Knudsen layer� �21–23�. From kinetic
theory of gas we can make the following order estimations,

�11 �
kB

m�gvth
, �12 �

m�11

kBT
, �22 �

m2�11

kB
2 T2 , �B3�

where m is the molecular mass and vth= �kBT /m�1/2 is the
thermal velocity.

In our droplet problem, let us calculate the effects of the
surface dissipation in the limit of large M1 and M2 without
gravity. The Knudsen number �mf/R is assumed to be very
small. Use of Eqs. �4.10� and �4.11� yields the surface dis-
continuities,

��� − ��  T��11 + �� + h���12 + �h��22�J1 cos � ,

�T� − �T  T2��12 + h��22�J1 cos � , �B4�

where J13��vc. For the gas droplet case �where ��=�g� the
temperature discontinuity is of order

�T� − �T �
q

��vth�s
�

�DT

��vth
T , �B5�

where q=−�T is the applied heat flux and DT is the liquid
thermal diffusivity. The interior temperature gradient is
modified as

�dT

dz
�

in
=

3�T
����s�2T

� 10���1 − �̂�
�1 + 3�̂/2�R2 +

�*

R
� , �B6�

where the first term in the brackets ��R−2� is the term ob-
tained in Eq. �4.9� and the second term ��R−1� arises from
the surface dissipation with

�* = ��11 + �h + h���12 + hh��22�����2T . �B7�

For the gas droplet case we have ���mvth /a2 and
�*�vth�g, where a is the molecular radius. In Eq. �B5� the
new second term ��R−1� dominates over the first term �
�R−2� for R��mf=m /a2�g.

APPENDIX C: AXISYMMETRIC VELOCITY FIELD

When a spherical droplet is considered, we may express
the velocity field v generally in terms of three scalar func-
tions H, Q, and S as �26�

v�r� = �H + Qr + �r � ��S �C1�

without loss of generality. We use the spherical coordinates
�r ,� ,��. The condition � ·v=0 in Eq. �2.3� then gives

�2H + 3Q + rQ� = 0, �C2�

where Q�=�Q /�r. The velocity components
vi=ei ·v�i=1,2 ,3� along the three-unit vectors in Eq. �2.1�
are expressed as

v1 = H� + Qr, v2 =
1

r
��H − ��S ,

v3 =
1

r
��H + ��S , �C3�

where H�=�H /�r and

�� � �/�� = re2 · � ,

�� � �sin ��−1�/�� = re3 · � . �C4�

We may express H, Q, and S as linear combinations of the
spherical harmonic functions Y�m�� ,��. As a merit of this
representation, if the equations for v are written in terms of
H, Q, and S, the terms with different � and m are not mixed
in the linear order. However, mixing occurs if v1, v2, and v3
are expressed as linear combinations of Y�m�� ,��.
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In the axisymmetric case v is independent of �, leading to
v3=0. We may set

H = Ĥ�r�cos �, Q = Q̂�r�cos �, S = 0. �C5�

Eq. �C2� is rewritten as L1Ĥ+3Q̂+rQ̂�=0 with

L1 = �2/�r2 + �2/r��/�r − 2/r2, �C6�

where �2h=cos �L1Ĥ and Q̂�=dQ̂ /dr. From the symmetry
the pressure deviation may also be set

�p = �p̂�r�cos � . �C7�

From �2�p=0 we find L1�p̂=0 in the bulk region �r�R�.
leading to the power law behavior,

�p̂ = p1r + p2
1

r2 �r � R� = p1�r �r 	 R� . �C8�

Using Eq. �C2� and S=0 we find

e1 · �2v = −
2Q

r
, e2 · �2v = −

�

��
�Q

r
+ Q�� . �C9�

Then the momentum equation, Eq. �2.4�, gives

2�

r
Q̂ +

�

�r
�p̂ + �g = 0, �C10�

��1

r
Q̂ + Q̂�� +

1

r
�p̂ + �g = 0, �C11�

for r�R. The same equations hold for r	R if � and � are
replaced by �� and ��, respectively. Elimination of �p̂ gives

L1Q̂=0, leading to Eqs. �3.2� and �3.3�. The pressure devia-
tion is written as in Eq. �3.4�.

To impose the boundary conditions at r=R, we need to
calculate the following components of the shear strain tensor
in Eq. �2.12�:

e1 · eJ · e1 = �−
4

r
Ĥ� +

4

r2Ĥ − 4Q̂�cos � ,

e2 · eJ · e1 = − �2Ĥ�

r
−

2Ĥ

r2 + Q̂�sin � . �C12�

Eqs.�3.10� and �3.11� can then be obtained.

�1� B. Levich, Physicochemical Hydrodynamics �Prentice-Hall,
Englewood Cliffs, N. J., 1962�.

�2� J. Hadamard, C. R. Acad. Sci. III Paris 152, 1735 �1911�.
�3� D. Rybczynski, Bull. Int. Acad. Sci. Cracovie 1, 40 �1911�.
�4� N. O. Young, J. S. Goldstein, and M. J. Block, J. Fluid Mech.

6, 350 �1959�. If heated from below, the balance vg=−vY

yields R��1�T� /�g. In this experiment �1�0.1 dyne/cmK
and ��1 g/cm3, so R�10−4�T� cm with T in K/cm was ob-
tained on earth. The Marangoni number �5� was much smaller
than 1 for R realized.

�5� The Marangoni number Ma is the typical ratio of the nonlinear
convection term v ·��T to the diffusion term DT�2�T in the
heat conduction equation in surface-tension-driven flow.

�6� G. Wozniak, R. Balasubramaniam, P. H. Hadland, and R. S.
Subramanian, Exp. Fluids 31, 84 �2001�; In this space experi-
ment T�0.025 K/cm, R�0.6 cm, and the bubble velocity
was 0.036 cm/s, but Ma��R2T� was very large ��452� due to
large R.

�7� N. Ichikawa, M. Kawaji, and M. Misawa, Microgravity Sci.
Technol. 7, 156 �2003�.

�8� B. Braun, Ch. Ikier, H. Klein, and D. Woermann, Chem. Phys.
Lett. 233, 565 �1995�.

�9� D. Beysens, Y. Garrabos, V. S. Nikolayev, C. Lecoutre-Chabot,
J.-P. Delville, and J. Hegseth, Europhys. Lett. 59, 245 �2002�.

�10� A. Onuki, Phys. Rev. Lett. 94, 054501 �2005�.
�11� R. Marek and J. Straub, Int. J. Heat Mass Transfer 44, 619

�2002�.
�12� Y. Garrabos, C. Lecoutre-Chabot, J. Hegseth, V. S. Nikolayev,

D. Beysens, and J.-P. Delville, Phys. Rev. E 64, 051602
�2001�.

�13� A. Michels, J. V. Sengers, and P. S. van der Gulik, Physica
�Amsterdam� 28, 1216 �1962�. This report shows � /kB=6.0

�1019 cm/s in liquid on the coexistence curve at T=25 C,
where the gas and liquid densities are 0.25 and 0.73 g/cm3.
Here, we have �s /kB=3.4�1022 g from the Clausius-
Clapeyron relation with ��p /�T�cx/kB=1.2�1022 cm3.

�14� J. Luettmer-Strathmann, J. V. Sengers, and G. A. Olchowy, J.
Chem. Phys. 103, 7482 �1995�; For CO2 this work indicates
that the first relation in Eq. �1.7� holds away from the critical
point, while a there is replaced by the correlation length � as
the critical point is approached.

�15� You-Xiang Zuo and E. H. Stenby, Fluid Phase Equilib. 132,
139 �1997�; S. B. Kiselev and J. F. Ely, J. Chem. Phys. 119,
8645 �2003�; The mean-field expression of the surface tension
��kBT�1−T /Tc�3/2 /a2, is a rather good approximation over a
wide temperature region �not very close to the critical point�.

�16� In the axisymmetric case the interface position is written as r
=R+� cos �, in the linear order. The droplet is displaced by �,
along the z axis, but remains spherical.

�17� R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport
Phenomena �Wiley, New York, 2002�.

�18� L. D. Landau and E. M. Lifshitz, Fluid Mechanics �Pergamon,
New York, 1959�.

�19� D. Bedeaux, A. M. Albano, and P. Mazur, Physica A 82, 438
�1976�; D. Bedeaux, Adv. Chem. Phys. 64, 47 �1986�.

�20� E. Johannessen and D. Bedeaux, Physica A 336, 252 �2004�.
�21� Y. P. Pao, Phys. Fluids 14, 306 �1971�.
�22� Y. Sone and Y. Onishi, J. Phys. Soc. Jpn. 35, 1773 �1973�.
�23� G. Fang and C. A. Ward, Phys. Rev. E 59, 417 �1999�; Phys.

Rev. E 59, 441 �1999�.
�24� F. Graner, R. M. Bowley, and P. Nozières, J. Low Temp. Phys.

80, 113 �1990�.
�25� W. van Saarloos and J. D. Weeks, Phys. Rev. Lett. 74, 290

�1995�.

A. ONUKI AND K. KANATANI PHYSICAL REVIEW E 72, 066304 �2005�

066304-10



�26� A. Onuki, Phase Transition Dynamics �Cambridge University
Press, Cambridge, 2002�; see Appendix 10E for general ex-
pressions of vectors in terms of the spherical harmonic func-
tions. See Eq. �2.2.37� for ��T /�p�s in gas and liquid.

�27� The velocity field of a moving sphere is given by v
= �3vDR /4r��ez+r−2zr�+ �vDR3 /4r3��ez−3r−2zr�−vDez in the
moving reference frame under the stick boundary condition
�18�. In this case we have Q1=3u0 /2 and H1=u0 /4, in Eq.
�3.2�.

�28� The critical phenomena of fluids can be mapped onto those of
the Ising spin systems �26�. In the latter systems let m�����

and �����−�� be the average spin and the susceptibility on the
coexistence curve. Then, if we set ��=kBT�Cp /6�, we ob-
tain A0=24�3m2 /��12, using the relations among the criti-
cal amplitudes.

�29� A. B. Kogan, D. Murphy, and H. Meyer, Phys. Rev. Lett. 82,
4635 �1999�; A. Furukawa and A. Onuki, Phys. Rev. E 66,
016302 �2002�.

�30� A. Onuki, Physica A 314, 419 �2002�.
�31� A. Onuki, H. Hao, and R. A. Ferrell, Phys. Rev. A 41, R2256

�1990�; A. Onuki and R. A. Ferrell, Physica A 164, 245
�1990�.

DROPLET MOTION WITH PHASE CHANGE IN A… PHYSICAL REVIEW E 72, 066304 �2005�

066304-11


